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NOMOLOGY OF EARTH-MOON ORBITS,
C = 4.00 AND C = C(Lq)

By R. F. Hoelker
Electronics Research Center

SUMMARY

The mathematical representation of earth-moon orbits is done by the
restricted problem of three bodies with a mass ratio u of 1/80.

Orbits are generated by computational means and represented in their
geometry in pictorial form.

The series is arranged according to descending values of the Jacobi
integration constant ""C' which procedure is in agreement with the first-line
ordering applied to the body of E-M orbits.

Further breakdowns of the orbit classes are made according to geomet-
rical regions and the directions of motion.

This volume covers the orbits on the C-levels of C =4.00 and
C = 3.20388, the latter of which closely corresponds to that of the cis-lunar
equilibrium point Lj.

INTRODUCTION

Past investigations about the existence of orbits in the restricted prob-
lem of three bodies are either aiming at representations of one-parametric
families of orbits or exploring more-parametric orbit spaces within a small
region of state space.

The rich scope of literature concerned herewith, however, is still not
sufficient to enable a researcher to form for himself a mental picture of all
orbits existing, in the sense as he has this of all Kepler orbits.

This lack of conceptualization is felt strongly by the engineer in all
cases of practical applications as well as by the student in the course of
studying this problem.

The present report represents the first part of an attempt to establish a

rather complete survey of orbits of the restricted problem. This is to be
understood in the following sense:




(1) sSince the study is made by numerical methods, the
density of the survey is contingent upon the step size of the
numerical variational process. In general the aim will be to
have the coverage dense enough to facilitate interpolation with
respect to structural form of orbits.

(2) The extension of coverage will range to such limits as
to allow extrapolation to regions further out.

(3) Orbits will be represented pictorially with emphasis
on shape rather than tabulation of time histories.

PROBLEM DESCRIPTION AND METHOD OF COMPUTATION

The restricted problem of three bodies is concerned with the
motion of a massless (third) body in the gravity field of two
masses. The masses exert inverse-square gravitational forces on
each other and on the third body, whereas the third body does not
on the two masses.

The motion of the two masses is here assumed to be circular,
the center of the circle being at the center of mass. Their
motion is planar.

The ratio of the masses is 1:79 and in accordance with the
proximity of this ratio to that of Moon to Earth, reference to
the masses as well as to the problem will be made in terms of
these. However, the masses here are assumed to be point-masses.

The motion of the third body will, for the length of this
report, be restricted to the motion plane of the two masses. Its
orbits will be studied and depicted within the frame of a rotating
Cartesian coordinate system (Xg Yg), lying in the motion plane,
with the Xg—-axis through the masses and the Yr- axis orthogonal
to it through the mass center (Figure 1).

EEE?_ ~ The equations of motion for the
it third body (ref. 1) are as follows:

. . Gmy Gm2
r+20xr-wr=--—s-r; - —5r, (1)
ry r;

with m7, my being the masses, repre-
senting Earth E and Moon M, respectively;

THE ROTATING COORDINATE SYSTEM (Xp, Yg) USEOD
FOR THE RESTRICTED PROBLEM OF THREE BODIES

Figure 1

r1, rp being the vectors from the masses
to the third body; r being the vector
from the mass center (origin) to the
body; w being the rate of rotation of the



system; and G being the gravitational constant. For w the re-
lationship holds

G(m, + m,)
UJ2 = ‘“El—s,——z (2)
D

with D being the distance between the two masses (Kepler's Third
Law) .

All representation in this report is done in normalized
units. This means that the distance between the masses is unit
length, the sum of the masses is unit mass, and the measure of
the gravitational constant is unity. From this follows that the
system rotation is at -unit rate, which then determines also the
time unit.

If the symbols are redefined to represent the normalized
variables, the equations of motion read

: N S
Erv2uxz-wir=-"3r1 - 51 (3)
1 2
with the "mass ratio" u being defined as

m

2
T R R— (4)

ml+m2

The Jacobi Integral of this system can be written in the following
form

Ve = (-w) G-+ rf) + G 5 - c (5)

2
R 1 2
where C is the integration constant, which in this report will be
referred to as the "Jacobi Constant".

All orbits depicted in this report are derived by numerical
computation, using either the IBM 7094 or 360. Plotting is done
on the Stromberg-Carlson 4020 using taped output of the computer.

The method of computation is based on the series-type special
perturbation method as developed by R. Arenstorf (ref. 2) and for
this application implemented by Berl Winston (ref. 3).



The computation of the zero-velocity curves is based on methods
developed by J. McGann and P. Masucci (refs. 4 and 5).

FIRST LINE DIVISION OF E-M-ORBITS ACCORDING TO
VALUES OF THE JACOBI CONSTANT C

Though the problem of this report is only two-dimensional,
the dimension of possible variation of initial conditions, which
is four, would imply a number of orbit-runs unmanageable to over-
see and organize, if this variation is done for all initial con-
ditions independently. This method also would result in many
unnecessary duplications of orbits.

A more indigenous way of subdividing and organizing the
problem solutions is found by making use of knowledge one posses-
ses of the problem in analytical form. This is formulated in the

Jacobi Integral (Eg. 5).
An exploitation of this integral can be made in various ways:

(a) The Jacobi-Integral yields a relationship between posi-
tion and velocity magnitude for any point of an orbit.

(b) In relation to the task of structuring and classifying
the solutions of the restricted problem, the integral provides the
most natural means of a first degree ordering of orbits. It
simply suggests the definition of classes of orbits according to
the value of the Jacobi constant C.

(c) For values of the Jacobi constant C larger than 3.00,
the Jacobi integral defines Zero-Velocity curves, which separate
the areas of existence of orbits from the "empty" areas. This
property of the Jacobi Integral will be of great utility, in two
respects: (1st) The procedure of surveying the orbits within a
C-level will be based upon it. (2nd) A classification within a
C-level will be derived from the "Keplerian" behavior of the E-M-
orbits in levels of large C-values.

THE ZERO-VELOCITY CURVES AND THE EMPTY AREAS OF
THE RESTRICTED PROBLEM OF THREE BODIES

For the benefit of those readers who are not familiar with
the geometrical implications of the Jacobi Integral, these may
briefly be discussed and illustrated.

If the integration constant C of the Jacobi Integral
%—-+ rg)
2

(1-w) 3=+ r2) + -c=v2 (6)
1



is larger than 3, the velocity Vr assumes the value zero on
curves of the (X, YRr) plane. These curves represent boundary
lines between areas of existence and areas where orbits do not
exist with that particular C-value. The overall appearance of
these "zero-velocity-curves" is depicted in Figure 2, for the
C-values of 3.30; 3.20388; 3.18720; 3.10; 3.02484; 3.010 and
3.0010.

o
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RESTRICTED PROBLEM OF THREE BODIES:

CURVES OF ZERO ORBITAL VELOCITY
FOR VARIOUS INTEGRATION CONSTANTS C
OF THE JACOBI INTEGRAL
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Figure 2

For better visualization as well as future reference, the
areas delineated by various Zero-Velocity curves are illustrated
separately on the following six figures, Figures 3 to 8. The
shaded areas are areas of non-existence of orbits for that par-
ticular value of the integration constant C.

The first of these six figures, Figure 3, shows that for
3.30 orbits exist in three separate regions, a "terrestrial",
"lunar" and an "outer" region.

C
a

With decrease of the Jacobian constant to C = 3.20388 the
terrestrial and lunar regions increase such that they touch each
other (see Figure 4). The point of tangency is marked as Lj,
which is also one of the collinear -equilibrium points.

The succeeding example (Figure 5) shows the instant where
contact occurs between the outer region and the inner region
(which latter consists of the terrestrial and lunar region).



T SHADED AREA IS EMPTY OF SHADED AREA IS EMPTY OF
ORBITS OF JACOB! CONSTANT C:330 ORBITS OF JACOBI CONSTANT C= 320388

Figure 3 Figure 4

The point of first contact is again a dynamically important point,
i.e., the translunar collinear equilibrium point Lj.

Figure 6 shows the development progressed so far that
the gate between inner and outer region of existence has opened
considerably. This situation corresponds to the integration
constant C = 3.100.

SHADED AREA IS EMPTY OF ;SAHADED AREA IS EMPTY OF
ORBITS OF JACOB! CONSTANT C=31872 ORBITS OF JACOBI CONSTANT C:310

Figure 5 Figure 6

Figure 7 then illustrates the point of C-curve development
at which the third gate at L3 starts to open. The corresponding
C-value is C = 3.02484. From this point on, the empty area is
split into two separate areas that are reflective to each other
with respect to the Xgr-axis.



The last figure of this group (Figure 8) shows an advanced
stage of separation of the two empty areas. Its C-value is 3.010.

SHADED AREA IS EMPTY OF [ SHADED AREA IS EMPTY OF
ORBITS OF JACOBI CONSTANT C:3.02484 ORBITS OF JACOBI CONSTANT C=3.010

Figure 7 Figure 8

For a value of C = 3.00 these two parts degenerate to a
single point each (L, and Lg), which are equilateral to the
masses. These two points represent the only stable ones of the
five equilibrium points.

As mentioned before, the boundary curves of the orbit areas
for a given C-value are curves on which all orbits of that par-
ticular value of Jacobi constant assume zero velocity. If C; is
larger than Cpy 2 3, the boundaries of the orbit areas of Cj; lie
in the interior of the Cgp-areas and constitute for Cp-orbits
curves of constant velocity, with the magnitude calculated from
the formula

V. = Cl - CO. (7)

Since the use of the term "zero-velocity curve" 1s appropri-
ate only for particular curves, once the C-value is chosen, this
report will refer to the curves of equal velocity within an
orbital area as to "isotachs". The term "C-curves" will also be
used for isotachs.

The possible use of the isotachs as one set of new orthogonal
coordinates may, at this place, only be mentioned.



SUBCLASSIFICATION OF ORBITS WITHIN A CONSTANT-C-LEVEL
DEMONSTRATED ON KEPLER ORBITS OF C = 4.00

The principle of classifying the orbits within a constant-
C-level is now derived from phenomena observable for Kepler orbits
that are represented in a rotating coordinate system.

The formulation of the Kepler problem in rotating coordinates
can immediately be deduced from the equations listed before by
reducing the smaller of the two masses to zero. This is expressed
in y = 0. Their motion and integral are described by the follow-

ing equations:

Kepler Motion in rotating coordinates:

¥+ 2w x r - w2£ = - l§ r (8)
r

Jacobi Integral for Kepler Motion:
_ 2 _
v = 7 + r C (9)

with r being the distance from the mass, which is located at the
origin.

For the Kepler problem the zero velocity curves are concen-
tric circles, and the regions of motions for C > 3 are an inner
and outer region of the plane, separated by a circular ring-
shaped area which is empty of orbits for the C-value chosen. The
empty ring-shaped area degenerates into the circle of unity
radius for C = 3. Figure 9 displays the boundary lines of the
two areas of existence of orbits for the four values of C = 3.30;
3.10; 3.01; and 3.00.

To introduce the classification principle, a value for C
will be chosen that is still larger than those shown on the graph,
namely C = 4.0. For this value the inner region is bounded by
the circle of radius .539 and the outer region comprises all
points of the plane with radius larger or equal to 1.675.

It is evident that Kepler orbits of the inner region assume
their apocenters and those of the outer region assume their
pericenters. Also, their shapes are independent of their align-
ments or "orientations" with respect to the axes (Xg, YR).

Therefore, for the two regions a complete survey of Kepler
orbits is obtained, if the orbits of the inner region are ordered



KEPLER PROBLEM IN ROTATING COORDINATES

CURVES OF ZERO ORBITAL VELOCITY
FOR VARIOUS INTEGRATION CONSTANTS C
OF THE JACOBI INTEGRAL

Figure 9

with their apocenters along the positive Xp-axis and those of the
outer region are ordered with their pericenters along this axis
branch. This procedure allows the identification ("tagging") of
any orbit by the Xp—axis position of its apo- or pericenter, i.e.
by values of a one-dimensional parameter. There is a duality of
orbits with each value of this parameter, however, since the di-
rection of the velocity vector at an apsidal point can be chosen
twofold.

In the following this method of ordering will be carried
through. 1In the course of it the subclassification of the orbits
will become evident.

Selecting first the inner region and apocenters whose velocity
vectors are directed in positive Yp-direction, a class of orbits
can be defined in the following way. The very first orbit is that
whose apocenter lies at the border and therefore shows zero-
velocity there. Orbits then are chosen by varying the initial
position toward the mass center with velocities increasing in mag-
nitude in accordance with the Jacobi integral for C = 4.0. The
behavior of this class and its termination is best discussed in
Figure 10. The first orbit on Figure 10 is that marked "A",
forming a cusp at the border and then moving about the center in
a "direct" sense of revolution. Its time history is shown to a
length that just covers its pericenter. The same orbit is shown
for a longer time history in Figure 11.




CIRCULAR
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ZERO-V CURVE
(INNER BRANCH)

KEPLER ORBITS OF JACOB! CONSTANT C=4.0J

CLASS I ' INNER REGION ORBITS
WITH PROGRADE MOTION AT APSES

Figure 10

Orbits "B" and "C" on Figure 10 are orbits with apocenters
moved further in. With respect to their pericenters one observes
that these move further out. Orbit "B" is individually shown on

Figure 12.

Yrbos
el
0.5
| .
| BN
!
MASS
—o‘g o \ \ 05
-0.5 \\9 S Xg
Pl 4 Xg
L/ -0.5 X -03
KEPLER ORBIT; C=4.0; CLASS I
KEPLER ORBIT; C=4.0; CLASS I&I Xg=0.490; Yg=0.0
Xg*® 0.53919; Yg=0.0; Vg2 0.0 Xg=0.000; Y= 0.5672
TIME SHOWN ' 4.505; CUSPING TIME SHOWN: 4.5
Figure 11 Figure 12

Apocenter and pericenter have identical radii for the orbit
"D", which, in fact, is a circular orbit.

Orbits whose initial points are moved still further inside,
will have points outside the circular orbit "D", as is demonstrated

10
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on orbits "E", "F", and "G". This means that these orbit types
have been encountered before, except for their orientation which
is ignored here.

All orbit shapes between and including orbit "A" and the
circular "D" (or if one prefers, between "A" and "G") are now

said to form a subclass to the Kepler orbits of C = 4. These
orbits have at all times the direct sense of motion, on account
of which one could call the class: the direct class. It is felt,

however, that the term "direct" is somewhat weak as class-
description, whence the term "prograde" will be used instead in
this report. Also this word seems to be an appropriate parallel
to the term "retrograde".

It may be noted that the apsidal positions (apocenters and
pericenters) of the prograde class do not fully occupy the total
positive segment of the Xp = axis within the inner region.

There is a finite interval left free between the pericenter
of orbit "G" and the origin. This will be occupied by the orbits
of the next class.

To develop the second class, again the cusping orbit "A" is
taken as initial orbit, and apocenters are chosen starting at the
boundary circle and moving toward the interior. However, now the
velocity direction at the apocenters is to be retrograde.

The development and the extent of this class can be seen on

Figure 13. Characteristic of this class is the change of sense
of motion found within every orbit of the class i.e., retrograde
motion at apocenter and prograde motion at pericenter. The class

is bordered on one side by the cusping orbit and on the other
side by the orbit that impacts the mass (Orbit "K" of Figure 13).
Two orbits of this class are shown for extended time histories on
Figures 14 and 15.

The changing sense of motion of the orbits gives rise to
defining this class as the class of ambigrade orbits of the inner
region of the Kepler orbits of C = 4.0.

The third class, depicted on Figure 16, is then characterized
by containing all orbits whose sense of revolution is retrograde
at all points on their orbits. It therefore is called the class
of retrograde orbits. This class starts with orbit "K", itself
being the 1limit between this and the former class, and continues

to the circular orbit "N". Orbits starting inside "N" with retro-
grade direction belong still to the class, but duplicate shapes
that are encountered before. One example of a retrograde orbit

for an extended time period is exhibited on Figure 17.

11
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Xg = 0.000; ¥g=-0.500

TIME SHOWN - 4.514

KEPLER ORBIT: C= 4.0; CLASS II
Xg = 0.530; Yg = 0.000

Xg® 0.000; Yg=-0.23342

TIME SHOWN: 4.518

Figure 14 Figure 15

The three defined classes take up all radial magnitudes of
apocenters that are possible in the inner region (or also all
possible pericenter magnitudes), ignoring the orbit orientation.

Of the three classes, the prograde and retrograde classes
possess circular orbits. Also they may be considered "closed" in
the sense that apocenter radii and pericenter radii form a con-
tinuum. Both characteristics cannot be ascribed to the class of

ambigrade orbits of the inner region of Kepler orbits of C = 4.0.

12



il

ZERO -V CURVE
{INNER BRANCH

7/

/
ﬁ
-0.5 f

i
\
&&
* E
3
ORBIT

IKEPLER ORBITS OF JACOBI CONSTANT C= 4.0

CLASS III: INNER REGION ORBITS
WITH RETROGRADE MOTION AT APSES

L [III

NN

prd

“©
COLLIDING
ORBIT

Figure 16

Yr

xR

KEPLER ORBIT: C= 4.0; CLASS I
Xg = 0.400, Yg=0.000

Xg = 0.000; Yg = ~1.07703

TIME SHOWN : 4.515

Figure 17

For surveying the Kepler orbits of the outer region

C = 4.0, a procedure is applied that is quite similar to
for the inner region: Restricting the pericenters to lie
positive Xg-axis facilitates an "ordering" of the orbits

of

that used
on the

by identi-

fying the orbits with their pericenter locations on the positive
Xgr-axis. This procedure again leads to a useful classification

of the orbits.

First all orbits with initially positive velocity direction

(?REO) may be chosen. The pericenter location is varied

from the

smallest possible value toward infinity. Figure 18 displays three

13
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Figure 18

orbit examples. Orbit "A" is the orbit that has a cusp on the
outer zero-velocity curve, i.e., on the inner border of the outer
region. All orbits, started on points further out, (see orbits
"B" and "C"), move first prograde and later retrograde, maintain-
ing the latter direction for all time after. Hence, the class is
ambigrade. All orbits of this class are hyperbolic orbits, if
studied in reference to an inertial system.

Figure 19 displays a longer time-history of the orbit "B"
of this class.

— N

| |-50,0 1/0 \ 5o.o\l Xr
T S
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KEPLER ORBIT® C=4.0, CLASS T¥
Xg = 2.800, Yg = 0.000

%g = 0.000; Yq =2.13408

TIME SHOWN - 14.27

Figure 19
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The orbits of the outer region that start in retrograde
direction can be subdivided into two classes. Those with peri-
center nearest to the border (r = 1.675) are still hyperbolic.
For pericenters located at radii larger than 2.00, the orbits are
finite, i.e., elliptical with respect to an inertial system. The
hyperbolic and the elliptic retrograde classes are represented in
selected orbits on Figures 20 and 21. It is important to observe
that the elliptic retrograde class produces a circular orbit and
that this class may also be considered "closed" in the sense men-
tioned before.

PARABOLIC

PARABOLIC

e

KEPLER ORBITS OF JACOBI CONSTANT C=4.0 KEPLER ORBITS OF JACOBI CONSTANT C= 4.0

CLASS ¥: OUTER REGION ORBITS: CLASS ¥I: OUTER REGION ORBITS
RETROGRADE - HYPERBOLIC RETROGRADE-ELLIPTIC

Figure 20 Figure 21

Two examples of the last class are illustrated individually
on Figures 22 and 23.

The orbit patterns that have been discussed in this chapter
for the Kepler problem and the classifications introduced will now
be the basis for pattern classifications of orbits of the Earth-
Moon (E-M) problem.

Though the orbital patterns of the E-M problem will in-
creasingly deviate from the "Keplerian" patterns as the study
moves toward smaller values of the Jacobi constant C, the refer-
ence to the patterns of Kepler orbits will prove to be a very
convenient handle for getting descriptively hold of the patterns
of E-M flight.

15
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E-M-ORBITS OF JACOBI CONSTANT C = 4.00

With the value of the Jacobi constant C as high as 4.00,
there is still a close similarity of orbits of the E-M problem to
those of the Kepler orbits in regions where they can be compared.
There is, of course, a third region, i.e., the lunar region, for
the E-M problem.

Orbits of the terrestrial region are first shown for short-
time histories on Figures 24 to 26 for the three classes of pro-
grade, ambigrade, and retrograde orbits. Aside from the slight
shift that is caused by the change in position of the mass, a
deviation from the corresponding Kepler figures is hardly recog-
nizable.

The similarity between the two problems for this region is
confirmed by the examples of long-time histories that are shown
on the next five graphs. The first four of them, Figures 27 to
30, concern the prograde class. The sequence is arranged SO as
to bring out the contraction that occurs in the width of the
ring-shaped area in which each orbit moves. The process of con-
traction ends with the formation of a single-loop orbit, called
"central" for obvious reasons. Its deviation from a circular
shape is hardly detectable by visual inspection. {(Note that the
meaning of the term "central" is not coinciding with that used in
Danby's book FUNDAMENTALS OF CELESTIAL MECHANICS.)

The class of retrograde orbits of the terrestrial region is
represented by three long-history orbits (Figure 31). This time
recourse was taken to superimposing all three orbits on each
other to bring out the phenomenon of class development by contrac-
tion, starting from the collision orbit and ending with achieving
the "central" orbit of retrograde sense of motion.

16
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For the ambigrade class, which also is quite similar to its
Kepler-model, the showing of long-time history orbits was dis-
pensed with.

18
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The behavior of the E-M orbits of the outer region of motion
for C = 4.00 is represented on Figures 32 to 34. These figures
closely resemble the corresponding figures of Kepler Motion.

ZERO-V :
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OUTER
BRANCH

-10 710y —~ /;.\/zo xR
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CUSPING ORBIT |—=10 \

.

.20 |ALL ORBITS ARE
ESCAPE ORBITS [

E-M ORBITS OF JACOBI CONSTANT C=4.0 ]

CLASS I¥: OUTER REGION ORBITS
WITH PROGRADE MOTION AT APSES

Figure 32

It may be mentioned that the terminology of conic sections
cannot truly be applied to E-M orbits, for which reason the infor-
mation is given in terms of "bounded" and "escaping". The isola-
tion of orbits that represent the border between bounded and es-
caping orbits is not straightforward. This will become clearer
when outer orbits will be discussed on the next lower C-level.

For the class of bounded orbits, one observes the existence
of a central orbit.

The succeeding three figures, Figures 35 to 37, are con-
cerned with motion in the lunar region. To appreciate the behavior
of the orbits, one has to be aware that the diameter of the lunar
region is not larger than 0.05 units, and that the consequent
closeness of the motion to the lunar mass causes very short
periods of revolution. The comparatively slow revolution of the
moon about the origin then effects a slow "backward walking" of
the loops.
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The same fact is also responsible for the scanty-only ap-
pearance of ambigrade orbits in the lunar region of C = 4.00,.
They will not be discussed for this C-level. (This is consistent

with maintaining a certain grid size in the survey.)

Representations of the lunar prograde and retrograde classes
are given on Figures 35 and 37. Geometrically the orbits "B",
"Cc" and "D" of Figure 35 resemble orbits "F", "G", and "H" of
Figure 37, but the motion on the second group is opposite to that

on the first group.

Figure 36 displays again orbits A, B, C of Figure 35, but to
much larger periods. This is done to demonstrate that the prin-
ciple of contraction toward a central orbit holds also here quite

well.
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This last graph is significant for another reason. It gives
the first demonstrable sign of a behavior different from Keplerian.
This is observed on orbit "A" and i.e., on the patterns of the
aposelenum points. At 0° and at 180°, as measured from the Moon
positive upward from the positive Xg—axis, the points are cusps;
with approaching minus 90° these apses become more rounded.

As one progresses to levels of smaller Jacobi constants, the
deviations from a symmetrical pattern distribution become more
pronounced.
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~

E~-M-ORBITS OF JACOBI CONSTANT C = 3.20388 = C(Lj)

The reason for selecting the value of C = 3.20388 as next in
line of the levels to be studied is the occurrence of first con-
tact between the terrestrial and the lunar region. The geometry
of the boundary lines for this level is shown on Figure 38.

The procedure of investigation is, in general, that of the
former chapter though the order in which the classes or orbits

are discussed, will be different.
ORBITS OF THE TERRESTRIAL REGION

The retrograde class of the terrestrial region will be
studied first. It is represented on Figure 39 in the fashion of
the formerly used overviews, giving a series of short-period time

24



ZERO-V CURVE
INNER BRANCH

[ ZERO-V CURVE
OUTER BRANCH

SHADED AREA IS EMPTY
OF ORBITS OF JACOBI CONSTANT C=3.20388

Figure 38

L AR o |

] 1
ZERO-V CURVE
L INNER BRANCH
e N
B o5 G N
/ EARTH
/ MOON
/ ;
\
/
4( -0.5 -/ N L %R
\ /N
\\ @ \\ /® /
\
\ JCENTRAL
T X_LORBIT AN
D S COLLISION
~__ ORBIT
1

[ E:M. ORBITS OF JACOBI CONSTANT C=3,20388

CLASS OF ORBITS IN TERRESTRIAL REGION
WITH RETROGRADE MOTION AT APSES

Figure 39



histories. This graph serves also to bring the sizes of the
orbits into perspective with that of the border-curve of the ter-
restrial region. Longer-time histories of selected orbits of
this class are then presented in the following sequence of six
graphs (Figures 40 to 45). Again this class is clearly defined
by the collision orbit on one end of the development and the
retrograde central orbit on the other end.
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Attention is drawn to the orbits on Figures 42 and 43. The
second of these is periodic, and the first of them can be looked
upon as a perturbation to the periodic one. The behavior of the
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perturbed orbit will be called "Keplerian", since the cycles, of
which nearly three are shown, follow each other in regular and
one-directional sequence. This is mentioned here, since soon

perturbations will be encountered that exhibit different patterns.

The retrograde class is again represented on Figure 46, this
time in superposition of three orbits. The dashed curve here
represents the central orbit.

The prograde class of the terrestrial region is taken up
next. Its short-period synopsis is exhibited on Figure 47. It
is noticed that the prograde central orbit has considerably lar-
ger dimensions than its retrograde counterpart. To set this con-
trast out still stronger, the two central orbits are shown to-
gether on Figure 48. (For a comprehensive treatise on those
orbits that are here listed as central, the reader is referred to
Ref. 6.)

What follows now is the stepwise development of the prograde
class, beginning with the central orbit on Figure 48. While the
initial position of an orbit is pushed successively further out
along the positive Xp-axis, the belt-shaped area of its orbital
motion widens out consistently. The terminal orbit of this se-
quence (Figures 49 to 55) starts quite close to the point where
the terrestrial and the lunar region meet. This orbit is pursued
for a time period of 120 units, which corresponds to a time of
about 17 months. On this same picture, the central orbit is
superimposed for comparison.

In this group the reader will take notice of two features in

which the orbits deviate from Keplerian orbits; i.e., first, in
the overall shapes of the orbits which accommodate to the shape
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Figure 46

of the zero-velocity curve; and secondly, in the seeming dis-
order that appears in the placement as well as shapes of the
apogees of an orbit. The first of these features points to the
proximity (in the C-level development) of orbits that commute
between the terrestrial and lunar regions. The second feature is
closely connected with the "fly-by" phenomenon. This phenomenon
will be seen to influence the shape of orbits in other classes of
this C-level and i.e., to a stronger measure than seen here.

For the ambigrade class of the terrestrial region of C = 4.0,
the short-time overview is presented on Figure 56. Here seven
orbits are shown that start in retrograde direction from the
positive Xgp-axis at points that increase in distance from the
origin.
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Attention of the reader is here directed to the fact that the
orbits which originate furthest out, do not regain their retro-
grade sense of motion, when they encounter their second apogee.

As the figure demonstrates, orbit "K" is cusping and orbit "L" is
prograding at the second apogee occurrence. This orbital behavior
will soon be discussed in more detail.

The following three figures, Figures 57 to 59, represent the
first examples concerned with probing directional effects, inso-
far as all orbits depicted originate at the same isotach, but at
varied positions along the isotach. The problem can be formulated

31



1 |
| [
ZERO-V CURVE
_—-1—-«— |INNER BRANCH

A}
/

AN

._\ \\ M(\)ON

/ NN

S
/

®X\' / l\ ®# /

-4 VK

CUSPING
ORBIT
l

2
V<

E.M. ORBITS OF JACOBI CONSTANT C=3.20388 |

CLASS OF ORBITS IN TERRESTRIAL REGION
WITH AMBIGRADE MOTION AT APSES

Figure 56

as follows: If the orbit departure is at the zero-velocity curve
(and therefore is in form of a cusp), will the succeeding apogee
be a cusp? If not, toward which direction will the succeeding
apogee change? For the present C-level, the three figures pro-
vide the answers:

(1) If both (first and second) apogees of an orbit are far
away from the moon (say half an E-M distance), cusps indeed map
into cusps. This is demonstrated on Figure 57.

(2) Orbits that have their arrival-apogee shortly ahead, and
at, the positive Xp-axis, experience a change of apogee characteris-
tics from cusps toward apogees of more retrograde motion. This is
visible on orbits "3", "4", and "5" of Figure 58.

(3) With orbits that depart from points that trail, or are
at, the positive Xg-axis, the departing cusps are mapped into
apogees of more prograde motion. This is recognizable on orbits
"5" and "6" of Figure 59.
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The mapping characteristics of (2) and (3) correspond to the
principle of reflection on the Xg-axis, valid for the present
problem.

The effect that comes to light in these three pictures is,
of course, attributable to the presence of the Moon, and can —
popularly speaking — be considered as one form of "fly-by effect".
Shortly an orbit will be depicted in which this effect is utilized
in two directions.

For orbits that originate on isotachs other than the zero-
velocity curve, these fly-by effects diminish, and i.e., the
more, the further the isotach is removed from the border-curve.

There are several other interesting features that are pecu-
liar to the class of ambigrade orbits. Since the phenomena, that
are observable on this C-level, are symptomatic for the lower
C-levels, they will here be introduced and discussed to some
detail in the course of discussing individual orbits of this class.
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An interesting deviation from the regular leaf-distribution,
proper to Kepler orbits, may be observed on the orbit of Figure
60. This orbit (which is very close to a periodic one) shows a
denser leaf-pattern in the axial directions than in the spaces
between. This orbit is initiated at (Xg = -0.74; Yg = 0) and is
not far from a collision orbit.

[E]GfORBn'bF JACOB! CONSTANT C=3.20388

AMBIGRADE ORBIT THROUGH (Xg=-0.74; Yg=0)
TIME SHOWN: 38.27

_— —

Figure 60

The progression of orbits will now follow an increase of the
initial point toward larger negative values on the Xg-axis: The
orbits on Figures 61 and 62 are initiated at Xg = -0.760 and
-0.770. The first of these is near a periodic orbit that exhibits
seven leaves. The second of these is shown for continuity reasons.

If the initial point is moved a small distance, i.e., to the

value of (Xg = -0.772, YR = 0), an orbit is generated that ex-
hibits the fly-by effect and associated pattern changes very
satisfactorily. The orbit is shown on Figures 63 to 65. The

first shows the total orbit, which for practical purposes can be
taken as periodic, with the time period of 44.4 units. The fly-by
occurs with the apogee "A" and. later again with the apogee "Q",
which is symmetrically located to "A". The effect of the two
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fly-bys on the orbit is brought into clearer perspective on the
two following figures. On Figure 64 one follows the orbit
through five apogees of nearly equal shape, till "A" is reached.
Succeeding this occurrence, the apogee loop is contracted to
nearly a cusp, here labeled "B". The next figure, Figure 65,
resumes the orbit history at "A" and traces it till the mirror-
image at "Q" is reached. All apogee-events between "A" and "Q"
are, indeed, occurring in shapes that are close to a cusp.
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The decomposition of the full orbit into two well-chosen
parts demonstrates also that an orbital behavior can frequently
be better understood if the orbit is properly dissected.

The succeeding five orbits display a particular stability
behavior, which reminds of the behavior of an undamped pendulum
(Figures 66 to 70). Reference may first be taken to Figure 67.
It illustrates a three-leaf periodic orbit. The four orbits on
the remaining four graphs are orbits that are initiated at XRp-
values quite close to that of the reference orbit. These four
orbits may, in fact, be considered as perturbations to the refer-
ence orbit. The behavior of the four orbits is uniform, in that
they all exhibit pendulum motions of their apogees about the
apogee positions of the reference orbit. For the convenience of
the reader, the apogee events are numbered in sequence of their
occurences on two of the orbits.

The orbit of the last of the five graphs terminates the first
sequence of ambigrade orbits, insofar as its initial condition is
at the zero-velocity curve (Xy = -0.782404; YR = 0).
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The points of orbit initiation are next chosen on the posi-
tive branch of the Xp-axis.

Figure 71 gives an example of a rather well-behaved orbit,
in the sense of Keplerian behavior. Figures 72 and 73 depict
identical orbits, shown, however, for different times. They
represent another example of pattern-changes due to fly-by which
occurs with the apogee labeled 19.

The orbits on the remaining four figures, Figures 74 to 77,
serve well to expose a stability behavior that is strikingly dif-
ferent from that discussed before. The reference orbit is here
again a three-leaf orbit (Figure 75). Very small variations are
then made in the initial Xg-value. The effect is a brief stay of
the orbit in the neighborhood of the reference orbit, followed by
a rapid spreading of the apogee events into other directions.

The comparison of this group with the group of orbits shown
around the orbit of Figure 67 points toward the significance of
the alignment of an orbit as a criterion for its stability
behavior. -
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ORBITS OF THE LUNAR REGION
THE CLASSES OF RETROGRADE AND PROGRADE LUNAR ORBITS

The orbits of the lunar retrograde class show rather regular
Keplerian patterns. Four examples of this are paraded on Figures
78 to 8l. This series starts with the central orbit and follows
with orbits of increasing belt-width. A super-position of three
of these orbits is illustrated on Figure 82. The collision orbit,
which terminates the sequence of retrograde orbits, will be shown

and discussed later.
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In transition to the prograde lunar class the central orbits
of the retrograde and prograde class are displayed together on
Figure 83. The lopsidedness of the prograde central orbit as well
as its size are in marked contrast to the almost circular and
symmetrically placed central orbit of retrograde direction. As to
the possibility of generating an "artificial" symmetrical prograde
central orbit, a suggestion is offered shortly in this chapter.

The lunar class of prograde orbits is then built up from the

central orbit to the more complicated forms in a sequence of
seven figures, Figures 84 to 90. As to the first figure of this
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series (Figure 84), it is worthwhile to notice that this class
has indeed three prograde single-loop orbits which are in close
neighborhood to each other. The development of the series then
follows first a horizontal expansion, while the expansion toward
the vertical direction develops only gradually. Three figures of
the series (Figures 87 to 89) show a central orbit superimposed
to the current orbit.

E.M. ORBIT OF JACOB! CONSTANT C=3.20388

PROGRADE ORBIT THROUGH (Xg=1.022;YgR=0)
TIME SHOWN: 15,01

Figure 85

In connection with a possible generation of a symmetrical
prograde orbit, the reader's attention is drawn to the very first
loop of the orbits on Figures 86 to 88. These are almost closed
loops, with the "best" case occurring on the orbit of Figure 87.
For clearer demonstration the first loop of this orbit is shown
isolated on Figure 91. It is intelligible that by low thrust
propulsion or small impulses this orbit can be changed to one
that closes on itself. This orbit then would also be centered
fairly well on the Moon.

THE CLASS OF AMBIGRADE LUNAR ORBITS

While the laws that govern the development of prograde
lunar orbits are not fully recognized yet, those determining the
patterns of ambigrade lunar orbits are easily recognizable from
orbit samples, if these are properly selected and shown for a
45
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sufficient length of orbital time. The subsequent seventeen
orbits (Figures 92 to 108) serve this purpose and simultaneously
constitute a survey of orbits in this class. This sequence is
laid out such that all orbits are initiated at the Xg-axis with
values starting at Xg = 1.088 and increasing for the subsequent

orbits.

The first of this series (Figure 92) is a collision orbit.
This orbit constitutes the limit between retrograde and ambigrade
orbits. Collision is encountered between the loops that are

numbered "2" and "3".
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Figure 92

The diru:ction of collision is nearly minus 90° as measured
from the mocn relative to the positive Xgr-branch.

A slight move of the initial point to the value Xg = 1.090
results in an orbit (Figure 93) that is prograde about the moon
for motion coming from the same general direction as that result-
ing in the collision on the former graph, i.e., between loops "2"
and "3". The same effect can be observed for the motion between
loops "6" and "7", which are positioned reflective to the former
two loops. The next picture (94) shows an extended history of

the identical orbit.
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Increasing the initial point to the locations Xp = 1.096,
1.100, and 1.1018 produces orbits (Figures 95 to 98) that demon-
strate that the loops "2" and "6" are - to their full length -
subject to gradual transformation into prograde motion. This
trend is consistently followed in the remainder of the series.

E.M. ORBIT OF JACOBI CONSTANT C=3.20388

AMBIGRADE ORBIT THROUGH (Xg=1.096; YR=0)
TIME SHOWN: 5.0

Figure 95
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With respect to the other loops of the orbits, the reader
will observe that all loops experience the change from retrograde
to prograde motion (i.e., from negative to positive ¢, if ¢ is the
central angle measured from the moon), but relative to each other
the loops located at ¢ = +90° are most advanced in this develop-
ment on any dgiven orbit. This becomes evident on those figures
of the remainder of the series that show orbits with a larger num-
ber of loops, as Figure 97 (which is an extension to the orbit of
Figures 96), 99, 100, and 101. Once this is understood, the ex-
planation for the particular shapes of the loops of the seven-
loop-orbit on Figure 102 is also clear.

11 %R
-

. - I
‘ E.M. ORBIT OF JACOBI CONSTANT €=3.20388
AMBIGRADE ORBIT THROUGH (XR=1103; Yp=O

TIME SHOWN: 25.0

Figure 99

The remaining six figures are actually presenting only two
different orbits. The first of these orbits is given in two sec-
tions of time history on Figures 103 and 104. The breakdown into
two parts of orbital time serves to display the "pendulum"-type
of stability, this orbit possesses. The reference orbit for which
the present orbit is a perturbation, is the seven-loop periodic
orbit of Figure 102. It is here worthwhile to mention that a
superposition of the two parts of the orbit history on one graphs
destroys the lucidity to such a degree that the governing laws of
formation cannot be recognized.

The residual four graphs, Figures 105 to 108, all represent
the same orbit, i.e., the orbit initiated at the very border of
the lunar region. The gradual build-up of this orbit serves to
show that initial unsymmetries will be complemented by the suc-
ceeding development such that finally an even distribution of
loops is obtained.
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£.M. ORBIT OF JACOBI CONSTANT C=3.20388

AMBIGRADE ORBIT THROUGH (Xg=1.1 1434;Yg=0)
TIME SHOWN: 45.0

Figure 108

In conclusion to this series, the laws that govern the for-
mation of the orbits of this particular series may be listed as

follows:
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(1) For a fixed direction ¢ from the Moon, the loops posi-
tioned at this direction undergo a consistent change toward a
stronger prograde character, as the initial position of the orbit
is varied to larger Xp-values.

(2) For a fixed orbit, those loops are developed furthest
toward, or into, the prograde direction that are positioned
closest to ¢ = £90°, and the loops that lag behind most, are po-
sitioned at ¢ = 180° and ¢ +15°. At & = 0°, there is a weak
local "prograde-maximum".

The information on ambigrade orbits will now turn to the
orbits initiated at the, Xg-axis branch that is between Moon and
Earth. A sequence of five orbits is depicted on Figures 109 to
113, which series is ordered so that initial points of orbits are
first closest to the Moon and succeedingly recede in direction
Earth.

The first three of these figures show orbits that are peri-
odic or very nearly so. The loops on each of these orbits show

a "gradiness" pattern that follows exactly the laws formulated
before.
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Figure 109

55



"MOON
\

(o]
5
/

v

A
X

E.M. ORBIT OF JACOBI CONSTANT C=3.20388 I

E.M. ORBIT OF JACOBI CONSTANT C=3.20388 ] | AMBIGRADE ORBIT THROUGH (Xg=0.841; Yg=0)
AMBIGRADE ORBIT THROUGH (Xg=0.850; YR=O) J PERIOD: 8.17
Figure 110 Figure 111

Compliance with these laws can also be observed with the
loops on the next two orbits (Figures 112 and 113) though this is
not as clearly visible due to the large number of loops shown for

each orbit.

The latter of these two orbits (Figure 113) is initiated at
the point Xj = 0.835209, which is very close to the location of
the equilibrium point Lj. This area will be subject to a special

study later.

As last contribution to the description of ambigrade orbits,
two figures, Figure 114 and 115, are inserted here, that indicate
a method by which changes in gradiness may directly be studied.
This method is similar to that discussed before for the terres-
trial region; it may be called the method of successive apocenters.

Two regions are singled out here:

On the first figure, departures from the zero velocity curve
are between ¢ = -90° and -145°. The succeeding apocenters are
between ¢ = -145° and -180° and show all retrograde motion.

On the Figure 115, departure is again from the zero-velocity
curve and i.e., at points between ¢ = 0° and 30°. The second
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apocenters fall into the angular region between ¢ = 0° and -30°
and show retrograde as well as prograde motion including its
transitional cusping case.

Using the method of successive apocenters, the same laws can
be deducted that were derived by interpretation of phenomena ob-
served on selected orbits.

ORBITAL BEHAVIOR IN THE NEIGHBORHOOD OF THE
CISLUNAR EQUILIBRIUM POINT Ll

It is appropriate at this point to clarify the geometry of
the regions in the neighborhood of the cislunar equilibrium point
Li. According to ref. 1, the separation of the terrestrial re-
gion from the lunar region for pu = 0.0125 is occurring at the
C-level of

C(Ll) = 3.2038861611

this value being accurate to eleven digits only. Further, if the
C-level would correspond exactly to C(L ), the point Ll would be
the only common point of the two reglons, located at

= 0.8352093934

accurate to 10 digits.

For the current investigation the C-level was chosen to be
exactly

C = 3.20388.

Since the C-value chosen for the current investigation is smaller
than the accurate value of C(L;), there exists a connecting pass
between the terrestrial and lunar region at the current C-level.
At the narrowest place, this pass (or "neck") has the diameter of
about 0.0025 units. The shape of the pass can be seen on several
of the following diagrams.

The equilibrium point Lj is located where the pass is
smallest.

There are two aspects that hold the interest of the investi-
gator in connection with the pass. The first is concerned with
the local behavior of the orbits in the neighborhood of the pass,
as the formation of particular loops, etc. The second deals with
the large scale behavior of orbits that pass through the pass.
These aspects will be discussed sequentially.
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The problem of orbital behavior "in the small" near Lj is
attacked again in two ways: Progressing along the Xgp-axis and
progressing along the border 1line.

Figures 116 to 118 serve to show the phenomena developing
along the first approach. Orbits are initiated orthogonal to the
XR—ax1s, with positive YR to the left of the point Lj, and with
negative YR to the right of Lj. Figure 116 displays one of the
resulting patterns: This is a pattern that is a rather symmetri-
cal with respect to a vertical line through Lj, which line may
also be considered temporarily as dividing the lunar from the
terrestrial region. From both sides, orbits that are prograde
w/r to their region approach the Lj-point, while they also ap-
proach the border. (See orbits A, B, C and G, F, E on Figure 116).
These orbits stay prograde till they reach the cusping orbits C
and E, respectively.

A unique orbit then exists that loops about Lj and closes on
itself (orbit D). This is the libration orbit to Lj. Its time
period is 2.7 units.

This pattern is supplemented by the development shown on
Figure 117. Here the progression of orbits of positive Yr is con-
tinued. It shows the cusping orbit "B" to be followed by ambi-
grade orbits which first belong to terrestrial orbits, later to
lunar orbits. The orbit "D" on this picture is nearly cusping
again. This type of orbit will be discussed shortly.
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In agreement with the "lateral" symmetry characteristics that
hold for developments "in the small"”, a similar progression can
be shown for orbits of negative YR, approaching Lj from the right.

This is corroborated by the third figure (Figure 118): Two
orbits are started at the very point of Lj in opposite directions
(orbit "A" with Or = -90°; orbit "B" with Or = +90°). The orbits
develop in shapes that are well symmetrical to each other. The
third orbit ("C") is initiated with 0r = 100°.

The second attack on the problem of motion near L and its
results are explained on hand of Figures 119 to 122.

Figure 119 shows a sequence of six orbits that all touch the
lower border of the pass. As the cusps progress from the terres-
trial region toward the lunar region, the orbits' second legs
(downstream) swing over from the terrestrial region to the lunar
region. The events connected with this transition are presented
on hand of the following three figures. Figure 120 shows a se-
gquence of orbits that all would be, progression-wise, placed be-
tween the two orbits "C" and "D" of the former graph. In this
sequence (Figure 120) one notices firstly orbit "B" which is the
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double-cusping orbit encountered before, on Figure 116. Secondly,
between orbit "D" and orbit "I", there must exist one orbit that
cuts the Xg-axis orthogonally. For reflection reasons, therefore,
it forms a loop about L] and produces a second cusp at the upper
border, after which it returns into the terrestrial region. This
orbit is displayed on Figure 121.

Next now, it will be attempted to make a point for the exis-
tence of a double-cusping orbit that is different from that of
Figure 121 by the fact that it loops twice about Lj: Figure 122
illustrates a sequence of four orbits that all are making first a
loop about Lj (as shown by the dashed line) and after the loop
are showing a pattern of motion that repeats the pattern observed
on Figure 120. 1In particular, for continuity reasons, the con-
clusion is permissible that there exists an orbit between orbits
"G" and "H" that crosses the Xg-axis orthogonally. This then is
the double-looping, double-cusping orbit.

Figure 121
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The same type of argument can be used to show the existence

of double-cusping orbits with more loops.
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BI-REGIONAL ORBITS

In reference to the problem of "large scale behavior" of
orbits that visit the neighborhood of Lj, it may be pointed out
that those orbits, which, after visit, return to their original
region, were discussed to some extent within the classes to which
they belong. What remains to be studied, however, is the impor-
tant class of orbits that - in the course of passing through the
neighborhood of Lj - cross from the lunar territory over into the
terrestrial, or reverse.

This investigation is particularly important for the current
C-level, because the orbits passing through the gap may, for
practical purposes, be considered orbits of the lowest possible
C-level that are able to cross over.

For any substantial width of the pass between regions, a
good survey of all possible bi-regional orbits would be organized
along a procedure as schematically presented on Figure 123. At
appropriately spaced points along the separatrix (or any other
sulitably chosen line that connects the two branches of the C-~curve
across the gap) orbits are initiated that e.g., have directions
toward the terrestrial region, ranging in path-angles from 920° to
minus 90°, the steps being chosen to fit a reasonable grid-size.
The orbits are computed for positive time as well as negative
(backward) time.

Due to the laws of reflection on the Xg-axis, there is an
option of this method or the alternate of choosing points on half
of the separatrix only and initiating orbits through these points
into directions that are representative for the full circle.
Again both directions on the time scale are to be computed, ex-
cept for the orbits originating at the point on the Xgr-axis.
There are two more options from lateral symmetry.

In terms of the symbolic labeling of Figure 118, two of the
four options are A, B, C, D, E, F and A, B, C, D, E', F'.

On the present C-level the gap is so narrow that the selec-
tion of two points on the separatrix is sufficient for represen-
tation of "all" points on the separatrix. The points chosen are
the upper border point and the point on the Xgr-axis, i.e., the
point Lj. For the upper point, where the velocity magnitude is
zero, a directional variation is without meaning.

Figure 124 traces the course of three orbits through the gap,

i.e., the cusping orbit and two orbits through Lj, these with
directions of 180 and 140 degrees.
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These same three orbits are illustrated for a longer time
period on the next graph, Figure 125. The traces of the three
orbits are seen to coincide practically for all time shown. This
is true for all directions for which the orbits are bi-regional.

The time periods here, if counted from the event of crossing
the separatrix, are forward about ten units and backwards four
units. On the former figure, Figure 124, the times run to about
one unit in both directions.

A study of the behavior of some bi-regional orbits on still
longer time-histories is documented in the remaining four figures
of this section (Figures 126-129). The first one shows the orbit
"B" of Figure 124 now traced to 102 units of time (i.e., about 14
calendar months), while the backward tracing of this orbit is
done on Figure 127 to about four calendar months. (However, the
application of reflection reverses the time direction and shows
the mirror image of the lunar region orbit.)
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Figure 127

The last two figures of this chapter then trace the history
of the terrestrial part of the orbit "A" of Figure 124. The
history is shown first for 52 time units, and next for 102 time
units. For better visibility, the apogees of the orbit on Figure
128 are numbered sequentially.

Several interesting and important conclusions can be made
from the orbital behavior observable here with the bi-regional
orbits:

(1) All orbits that connect lunar and terrestrial regions
on the lowest energy level, maintain a rather large distance from
both, Earth and Moon. To obtain trajectories that commute between
the neighborhoods of the two masses, additional energy would be
needed either for making directly connecting flights or for orbit-
transfer maneuvers.

(2) Placing a satellite at the cislunar equilibrium point
Lj from either Earth or Moon requires an energy level higher than
the "lowest", the additional energy needed either for transfer
maneuvers, or for a braking impulse at Lj, or a combination of
both.
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OUTER REGION ORBITS

The investigation of the patterns formed by the orbits that
exist outside the empty area for C = 3.20388 will be carried
through in three steps. First retrograde orbits will be studied
that are initiated at the positive Xgr-axis at directions orthogo-
nal to the axis. Secondly, orbits will be initiated at various
points along two isotachs, with velocities parallel to the iso-
tach. The last part will be concerned with orbits initiated with
prograde velocity directions, resulting in ambigrade orbits.

The retrograde series is started with the orbit that cusps
at the point of intersection of the positive Xgr-axis with the
outer zero-velocity curve (Xgr = 1.2092). The orbit history
(Figure 130) is traced forward and backwards of the cusping event
for 73.4 time units. This orbit reaches a maximum distance from
the origin of about 8 units, after which it returns to the vicinity
of the zero-velocity curve.

For the subsequent orbit (Figure 131) the point of orbit
initiation is shifted to the location (Xg = 1.215; Yr = 0). The
effect of this shift is a contraction of the dimension of the
orbit against the former orbit to a maximum radius of about 6
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E_M. ORBITS OF JACOBI CONSTANT C=3.20388 | E.M. ORBIT OF JACOBI CONSTANT C=3.20388
CUSPING ORBIT THROUGH (Xg=1.20921; Yg=0) RETROGRADE ORBIT THROUGH (Xg=1.215; Yg=0)
AND CENTRAL ORBIT OF OUTER REGION AND CENTRAL ORBIT OF OUTER REGION

TIME SHOWN ON CUSPING ORBIT: +73.4 TIME SHOWN: £50.2

Figure 130 Figure 131
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units. This orbit is also traced beyond its second minimum, for
positive and negative time. The central orbit, to which the
present series of retrograde orbits will finally contract, is
already shown with the graphs of the last two orbits (see dashed
curve) .

The development of this series toward the central orbit is
illustrated by the sequence of the next five figures, Figures 132
to 136. The central orbit itself is passing through the point
(Xg = 1.713; Yg = 0) and shows a period of 11.64 units (Figure 136).

[ .M. ORBIT OF JACOBI CONSTANT C=3.20388

RETROGRADE ORBIT THROUGH (Xg=1.30032; Yq=0)
PERIOD: 44.9

E.M. ORBIT OF JACOBI CONSTANT C= 3.20388
RETROGRADE ORBIT THROUGH (Xg=1.40; Yg =0)
PERIOD: 51.0

Figure 132 Figure 133

It is worth noting that the central orbit, at its crossing
point with the positive Xp-axis, shows a velocity maximum, in con-
trast to the existence of a velocity minimum at the positive Xg-
axis for the first orbits of this series (zero-velocity for the
very first one). There is an interesting gradual travel of the
first minimum-velocity-point from the positive Xg-axis toward
the negative Xgp-axis as the series progresses beyond the orbit of
Figure 133, At the moment the right hand axis point loses the
position of a minimum-velocity point, it acquires the position of
a maximum-velocity point. Both extrema are understood, in general,
as local extrema, only.
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Contrasted to the last series will now be a series of those
retrograde orbits that start orthogonally to the negative Xgr-axis.
This series finds itself illustrated on the four figures, Figures
137 to 140. The progression is reverse to that of the former
series in that the series starts with an orbit close to the cen-
tral one. By pulling the initial point of the orbits stepwise
closer to the zero-velocity curve, the overall size of the orbits
increases. In this progression the maximum point of the orbits
goes beyond all limits before that orbit is reached that touches

the zero-velocity curve. This last orbit is depicted on Figure
140.
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S 3.0 — [yRMAx -

ANENY
%

//_ ?\ \

3 : [EECOND
FIRST VR-MAX
l i -MAX .

LE M ORBIT OF JACOBI CONSTANT C 3, 20388 r EM M. . ORBIT OF JACOBI CONSTANT C =3, 20388

-
RETROGRADE ORBIT THROUGH (Xg=-I. 500 Yr=0) RETROGRADE ORBIT THROUGH (Xg=-1.400; Yg=0)
TIME SHOWN: 62. 02

TIME SHOWN: 60.0

Figure 137 Figure 138

The contrast in orbital behavior between the last orbit and
the orbit that was initiated with zero-velocity at the positive
Xgr-axis (Figure 130) before, gives rise to the question, what the
behavior will be for those orbits that are started at other points

of the same zero-velocity curve. This question will be considered
next.
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RETROGRADE ORBIT THROUGH (Xg=-1.26765; Yg=0)

RETROGRADE ORBIT THROUGH (Xg=-1.275; Yg=0)
TIME SHOWN: 21.4

TIME SHOWN: 83.1

Figure 139 Figure 140

FLY-BY EFFECT ON OUTER REGION ORBITS

The fly-by effect discussed here is different from that dis-
cussed before for orbits of the terrestrial region. Concern is
here given to the question of relative magnitude of radial dis-
tances an orbit assumes before and after a close approach to the
EM-system. Obviously this effect does not exist for cases where
close approach is exactly on the (positive or negative) Xg-axis,
since reflection laws provide here the answer. The dependence of
the effect on the central angle ¢, under which close approach is
measured, will conveniently be established by varying the close
approach point along an isotach, to start with e.g., the zero-
velocity curve. The procedure is indicated on Figure 141 where
five short time-orbits are shown, each of which cusping on the
border curve. Note is taken that again the reflection laws allow
to restrict the study to either the upper or the lower half of
the isotach, if orbit histories are computed forward as well as
backward.

The effect on these orbits is shown by the succeeding seven
graphs, Figures 142 to 148. The first of these is the symmetri-
cal case again, providing a comparison basis for the next cases.
Figures 143 and 144 show the orbit history before and after a close
approach through the border point: (Xgr = 1.21246; YR = 0.057889).
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For the two branches the maximum-velocity points are marked on the
figures, from which can be recognized that there is a reduction-

through fly-by — from a maximum distance of about 14 units to a
maximum distance of about 6 units.
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If the point of close approach is raised further along the
zero-velocity curve, as to the point: (Xg = 1.2022; YR = 0.35194),
both upstream and downstream maxima of the orbit history are at
larger distances than on the former orbit (Figure 145 and 146),
but the upstream maximum lies at infinity, while the maximum
after fly-by is at a distance of about 13 units.

hvg

B P

E.M. ORBIT OF JACOBI CONSTANT C= 3.20388 | E.M.ORBIT OF JACOBI CONSTANT C=3.20388 |
CUSPING ORBIT THROUGH (Xg=1.2022; Yg=0.35194) | | CUSPING ORBIT THROUGH (Xg=1.2022; Yg=0.35194)
TIME SHOWN: -27.2 TO +4.4 TIME SHOWN: -4.0 TO + 64

Figure 146

Figure 145

While the effect of fly-by within the former orbit is a re-
duction in maximum distance, the fly-by effect for the latter
orbit can be called a "capture" (at least a temporary one).

For orbits whose close approach points are reflective to
those of the former two cases, one would speak of an increase in
maximum distance and of an escape-maneuver, respectively.

The magnitude of the fly-by effect will now briefly be
studied for orbits that have their close approach-point on the
isotach of C = 3.25. The position of this curve in relation to
the zero-velocity curve can be seen on Figure 147. There also
are shown four short-time orbits that are tangential to the iso-

tach 3.25.
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Figure 147

Of the orbits computed here, only two will be demonstrated.
Figure 148 shows the orbit that is orthogonal to the positive
Xgr-axis, and Figure 149 displays the forward and backward history
of the orbit through the point: (Xg = 1.2318; Yr = 0.3894).

This is nearly that point on the isotach where the ratio between
the maximum distances before and after fly-by is largest. As
this figure demonstrates, the fly-by effect for orbits starting
on the isotach 3.25 is considerably smaller than that for orbits
through points on the zero-velocity curve.

A summary of the fly-by effect connected with the outer-
region orbits of the C-level of 3.20388 is then presented in
diagrammatic form on Figures 150 and 151. The pictures show
radial distances of apocenters for two successive apocenters plot-
ted over the angular location of the pericenter that occurs be-
tween the two apocenters, the angle being measured from the origin
in mathematically positive direction. The first figure is con-
cerned with orbits that are cusping on the zero-velocity curve.
The second figure is for orbits that are tangential to the isotach
of 3.25. Notice that the second of the figures carries the
abscissa through +180° while the first one shows an abscissa range
of only 10 degrees.
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AMBIGRADE ORBITS OF THE OUTER REGION

Since the orbit that cusps at the intersection of the posi-
tive XR-axis with the zero-velocity curve, has a first apocenter
of finite distance, continuity considerations demand that there
is also a group of orbits (though it may be small, comparatively)
that start in prograde direction on the positive Xr-axis and have
an apocenter of finite distance. The orbits are, in fact, ambi-
grade since the motion reverses very soon.

Of this group, two examples will be shown on the following
four figures, Figures 152 to 155. The first two pictures show
two different time histories of the orbit through the point:
(Xg = 1.210; Yg = 0). The second couple of figures accommodate
two corresponding views for the orbit through (Xg = 1.212; Yr = 0).
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AMBIGRADE ORBIT THROUGH (Xg=1.210; Yg=0; Bg=90°) AMBIGRADE ORBIT THROUGH (Xgs!.210; Yg=0; Og=90°)

TIME SHOWN : £0.9 TIME SHOWN: -4.2 TO +56.01
Figure 152 Figure 153

It is recalled that the cusping orbit which intersects the
XR-axis with zero-velocity at the value of XgR = 1.2092, reaches
a first maximum of about 8 units.
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Figure 154
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AMBIGRADE ORBIT THROUGH (Xg=1.212; YR=0; Or=90°)

TIME SHOWN:-4.2 TO +73.98

Figure 155

The two ambigrade orbits reach a first maximum of 10 units

and of 15 units, respectively.

With the increase of initial Xp, the apocenter distances

from the origin grow rapidly.

The ambigrade orbits are becoming

escape orbits, before their pericenters have reached the Xp-value

of 1.30.
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